- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, two fourth-order accurate compact difference schemes are presented for solving the Helmholtz equation in two space dimensions when the corresponding wave numbers are large. The main idea is to derive and to study a fourth-order accurate compact difference scheme whose leading truncation term, namely, the $\mathcal O(h^4)$ term, is independent of the wave number and the solution of the Helmholtz equation. The convergence property of the compact schemes are analyzed and the implementation of solving the resulting linear algebraic system based on a FFT approach is considered. Numerical results are presented, which support our theoretical predictions.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8613.html} }In this paper, two fourth-order accurate compact difference schemes are presented for solving the Helmholtz equation in two space dimensions when the corresponding wave numbers are large. The main idea is to derive and to study a fourth-order accurate compact difference scheme whose leading truncation term, namely, the $\mathcal O(h^4)$ term, is independent of the wave number and the solution of the Helmholtz equation. The convergence property of the compact schemes are analyzed and the implementation of solving the resulting linear algebraic system based on a FFT approach is considered. Numerical results are presented, which support our theoretical predictions.