- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
A uniformly first-order convergent numerical method for the discrete-ordinate transport equation in the rectangle geometry is proposed in this paper. Firstly we approximate the scattering coefficients and source terms by piecewise constants determined by their cell averages. Then for each cell, following the work of De Barros and Larsen [1, 19], the solution at the cell edge is approximated by its average along the edge. As a result, the solution of the system of equations for the cell edge averages in each cell can be obtained analytically. Finally, we piece together the numerical solution with the neighboring cells using the interface conditions. When there is no interface or boundary layer, this method is asymptotic-preserving, which implies that coarse meshes (meshes that do not resolve the mean free path) can be used to obtain good numerical approximations. Moreover, the uniform first-order convergence with respect to the mean free path is shown numerically and the rigorous proof is provided.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2009.09-m2894}, url = {http://global-sci.org/intro/article_detail/jcm/8602.html} }A uniformly first-order convergent numerical method for the discrete-ordinate transport equation in the rectangle geometry is proposed in this paper. Firstly we approximate the scattering coefficients and source terms by piecewise constants determined by their cell averages. Then for each cell, following the work of De Barros and Larsen [1, 19], the solution at the cell edge is approximated by its average along the edge. As a result, the solution of the system of equations for the cell edge averages in each cell can be obtained analytically. Finally, we piece together the numerical solution with the neighboring cells using the interface conditions. When there is no interface or boundary layer, this method is asymptotic-preserving, which implies that coarse meshes (meshes that do not resolve the mean free path) can be used to obtain good numerical approximations. Moreover, the uniform first-order convergence with respect to the mean free path is shown numerically and the rigorous proof is provided.