- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
We utilize Fourier methods to analyze the stability of the Yee difference schemes for Bérenger PML (perfectly matched layer) as well as the UPML (uniaxial perfectly matched layer) systems of two-dimensional Maxwell equations. Using a practical spectrum stability concept, we find that the two schemes are spectrum stable under the same conditions for mesh sizes. Besides, we prove that the UPML schemes with the same damping in both directions are stable. Numerical examples are given to confirm the stability analysis for the PML method.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2009.09-m2808}, url = {http://global-sci.org/intro/article_detail/jcm/8600.html} }We utilize Fourier methods to analyze the stability of the Yee difference schemes for Bérenger PML (perfectly matched layer) as well as the UPML (uniaxial perfectly matched layer) systems of two-dimensional Maxwell equations. Using a practical spectrum stability concept, we find that the two schemes are spectrum stable under the same conditions for mesh sizes. Besides, we prove that the UPML schemes with the same damping in both directions are stable. Numerical examples are given to confirm the stability analysis for the PML method.