- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
A new recovery operator $P : Q^{disc}_n (\mathcal{T}) → Q^{disc}_{n+1}(\mathcal{M})$ for discontinuous Galerkin is derived. It is based on the idea of projecting a discontinuous, piecewise polynomial solution on a given mesh $\mathcal{T}$ into a higher order polynomial space on a macro mesh $\mathcal{M}$. In order to do so, we define local degrees of freedom using polynomial moments and provide global degrees of freedom on the macro mesh. We prove consistency with respect to the local $L_2$-projection, stability results in several norms and optimal anisotropic error estimates. As an example, we apply this new recovery technique to a stabilized solution of a singularly perturbed convection-diffusion problem using bilinear elements.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2009.09-m2899}, url = {http://global-sci.org/intro/article_detail/jcm/8598.html} }A new recovery operator $P : Q^{disc}_n (\mathcal{T}) → Q^{disc}_{n+1}(\mathcal{M})$ for discontinuous Galerkin is derived. It is based on the idea of projecting a discontinuous, piecewise polynomial solution on a given mesh $\mathcal{T}$ into a higher order polynomial space on a macro mesh $\mathcal{M}$. In order to do so, we define local degrees of freedom using polynomial moments and provide global degrees of freedom on the macro mesh. We prove consistency with respect to the local $L_2$-projection, stability results in several norms and optimal anisotropic error estimates. As an example, we apply this new recovery technique to a stabilized solution of a singularly perturbed convection-diffusion problem using bilinear elements.