- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
From a limit model in electric field obtained by letting the frequency vanish in the time-harmonic Maxwell equations, we consider a limit perturbation model in the tangential boundary trace of the curl of the electric field for localizing numerically certain small electromagnetic inhomogeneities, in a three-dimensional bounded domain. We introduce here two localization procedures resulting from the combination of this limit perturbation model with each of the following inversion processes: the Current Projection method and an Inverse Fourier method. Each localization procedure uses, as data, a finite number of boundary measurements, and is employed in the single inhomogeneity case; only the one based on an Inverse Fourier method is required in the multiple inhomogeneities case. Our localization approach is numerically suitable for the context of inhomogeneities that are not purely electric. We compare the numerical results obtained from the two localization procedures in the single inhomogeneity configuration, and describe, in various settings of multiple inhomogeneities, the results provided by the procedure based on an Inverse Fourier method.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2009.27.4.016}, url = {http://global-sci.org/intro/article_detail/jcm/8586.html} }From a limit model in electric field obtained by letting the frequency vanish in the time-harmonic Maxwell equations, we consider a limit perturbation model in the tangential boundary trace of the curl of the electric field for localizing numerically certain small electromagnetic inhomogeneities, in a three-dimensional bounded domain. We introduce here two localization procedures resulting from the combination of this limit perturbation model with each of the following inversion processes: the Current Projection method and an Inverse Fourier method. Each localization procedure uses, as data, a finite number of boundary measurements, and is employed in the single inhomogeneity case; only the one based on an Inverse Fourier method is required in the multiple inhomogeneities case. Our localization approach is numerically suitable for the context of inhomogeneities that are not purely electric. We compare the numerical results obtained from the two localization procedures in the single inhomogeneity configuration, and describe, in various settings of multiple inhomogeneities, the results provided by the procedure based on an Inverse Fourier method.