- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This paper presents an efficient moving mesh method to solve a nonlinear singular problem with an optimal control constrained condition. The physical problem is governed by a new model of turbulent flow in circular tubes proposed by Luo et al. using Prandtl's mixing-length theory. Our algorithm is formed by an outer iterative algorithm for handling the optimal control condition and an inner adaptive mesh redistribution algorithm for solving the singular governing equations. We discretize the nonlinear problem by using an upwinding approach, and the resulting nonlinear equations are solved by using the Newton-Raphson method. The mesh is generated and the grid points are moved by using the arc-length equidistribution principle. The numerical results demonstrate that proposed algorithm is effective in capturing the boundary layers associated with the turbulent model.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8578.html} }This paper presents an efficient moving mesh method to solve a nonlinear singular problem with an optimal control constrained condition. The physical problem is governed by a new model of turbulent flow in circular tubes proposed by Luo et al. using Prandtl's mixing-length theory. Our algorithm is formed by an outer iterative algorithm for handling the optimal control condition and an inner adaptive mesh redistribution algorithm for solving the singular governing equations. We discretize the nonlinear problem by using an upwinding approach, and the resulting nonlinear equations are solved by using the Newton-Raphson method. The mesh is generated and the grid points are moved by using the arc-length equidistribution principle. The numerical results demonstrate that proposed algorithm is effective in capturing the boundary layers associated with the turbulent model.