- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this article, we analyse three related preconditioned steepest descent algorithms, which are partially popular in Hartree-Fock and Kohn-Sham theory as well as invariant subspace computations, from the viewpoint of minimization of the corresponding functionals, constrained by orthogonality conditions. We exploit the geometry of the admissible manifold, i.e., the invariance with respect to unitary transformations, to reformulate the problem on the Grassmann manifold as the admissible set. We then prove asymptotical linear convergence of the algorithms under the condition that the Hessian of the corresponding Lagrangian is elliptic on the tangent space of the Grassmann manifold at the minimizer.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8577.html} }In this article, we analyse three related preconditioned steepest descent algorithms, which are partially popular in Hartree-Fock and Kohn-Sham theory as well as invariant subspace computations, from the viewpoint of minimization of the corresponding functionals, constrained by orthogonality conditions. We exploit the geometry of the admissible manifold, i.e., the invariance with respect to unitary transformations, to reformulate the problem on the Grassmann manifold as the admissible set. We then prove asymptotical linear convergence of the algorithms under the condition that the Hessian of the corresponding Lagrangian is elliptic on the tangent space of the Grassmann manifold at the minimizer.