- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we study numerical methods for an optimal control problem with pointwise state constraints. The traditional approaches often need to deal with the delta-singularity in the dual equation, which causes many difficulties in its theoretical analysis and numerical approximation. In our new approach we reformulate the state-constrained optimal control as a constrained minimization problems only involving the state, whose optimality condition is characterized by a fourth order elliptic variational inequality. Then direct numerical algorithms (nonconforming finite element approximation) are proposed for the inequality, and error estimates of the finite element approximation are derived. Numerical experiments illustrate the effectiveness of the new approach.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8562.html} }In this paper, we study numerical methods for an optimal control problem with pointwise state constraints. The traditional approaches often need to deal with the delta-singularity in the dual equation, which causes many difficulties in its theoretical analysis and numerical approximation. In our new approach we reformulate the state-constrained optimal control as a constrained minimization problems only involving the state, whose optimality condition is characterized by a fourth order elliptic variational inequality. Then direct numerical algorithms (nonconforming finite element approximation) are proposed for the inequality, and error estimates of the finite element approximation are derived. Numerical experiments illustrate the effectiveness of the new approach.