- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
A fully discrete finite difference scheme for dissipative Klein-Gordon-Schrödinger equations in three space dimensions is analyzed. On the basis of a series of the time-uniform priori estimates of the difference solutions and discrete version of Sobolev embedding theorems, the stability of the difference scheme and the error bounds of optimal order for the difference solutions are obtained in $H^2\times H^2\times H^1$ over a finite time interval. Moreover, the existence of a maximal attractor is proved for a discrete dynamical system associated with the fully discrete finite difference scheme.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1004-m3191}, url = {http://global-sci.org/intro/article_detail/jcm/8556.html} }A fully discrete finite difference scheme for dissipative Klein-Gordon-Schrödinger equations in three space dimensions is analyzed. On the basis of a series of the time-uniform priori estimates of the difference solutions and discrete version of Sobolev embedding theorems, the stability of the difference scheme and the error bounds of optimal order for the difference solutions are obtained in $H^2\times H^2\times H^1$ over a finite time interval. Moreover, the existence of a maximal attractor is proved for a discrete dynamical system associated with the fully discrete finite difference scheme.