- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
We compare in this paper two major implementations of large time-step schemes for advection equations, i.e., Semi-Lagrangian and Lagrange-Galerkin techniques. We show that SL schemes are equivalent to exact LG schemes via a suitable definition of the basis functions. In this paper, this equivalence will be proved assuming some simplifying hypotheses, mainly constant advection speed, uniform space grid, symmetry and translation invariance of the cardinal basis functions for interpolation. As a byproduct of this equivalence, we obtain a simpler proof of stability for SL schemes in the constant-coefficient case.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1003-m0012}, url = {http://global-sci.org/intro/article_detail/jcm/8532.html} }We compare in this paper two major implementations of large time-step schemes for advection equations, i.e., Semi-Lagrangian and Lagrange-Galerkin techniques. We show that SL schemes are equivalent to exact LG schemes via a suitable definition of the basis functions. In this paper, this equivalence will be proved assuming some simplifying hypotheses, mainly constant advection speed, uniform space grid, symmetry and translation invariance of the cardinal basis functions for interpolation. As a byproduct of this equivalence, we obtain a simpler proof of stability for SL schemes in the constant-coefficient case.