- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
As an important model in quantum semiconductor devices, the Schrödinger-Poisson equations have generated widespread interests in both analysis and numerical simulations in recent years. In this paper, we present Gaussian beam methods for the numerical simulation of the one-dimensional Schrödinger-Poisson equations. The Gaussian beam methods for high frequency waves outperform the geometrical optics method in that the former are accurate even around caustics. The purposes of the paper are first to develop the Gaussian beam methods, based on our previous methods for the linear Schrödinger equation, for the Schrödinger-Poisson equations, and then check their validity for this weakly-nonlinear system.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2009.10-m1005}, url = {http://global-sci.org/intro/article_detail/jcm/8518.html} }As an important model in quantum semiconductor devices, the Schrödinger-Poisson equations have generated widespread interests in both analysis and numerical simulations in recent years. In this paper, we present Gaussian beam methods for the numerical simulation of the one-dimensional Schrödinger-Poisson equations. The Gaussian beam methods for high frequency waves outperform the geometrical optics method in that the former are accurate even around caustics. The purposes of the paper are first to develop the Gaussian beam methods, based on our previous methods for the linear Schrödinger equation, for the Schrödinger-Poisson equations, and then check their validity for this weakly-nonlinear system.