- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Stabilized or Chebyshev explicit methods have been widely used in the past to solve stiff ordinary differential equations. Making use of special properties of Chebyshev-like polynomials, these methods have favorable stability properties compared to standard explicit methods while remaining explicit. A new class of such methods, called ROCK, introduced in [Numer. Math., 90, 1-18, 2001] has recently been extended to stiff stochastic differential equations under the name S-ROCK [C. R. Acad. Sci. Paris, 345(10), 2007 and Commun. Math. Sci, 6(4), 2008]. In this paper we discuss the extension of the S-ROCK methods to systems with discrete noise and propose a new class of methods for such problems, the $\tau$-ROCK methods. One motivation for such methods is the simulation of multi-scale or stiff chemical kinetic systems and such systems are the focus of this paper, but our new methods could potentially be interesting for other stiff systems with discrete noise. Two versions of the $\tau$-ROCK methods are discussed and their stability behavior is analyzed on a test problem. Compared to the $\tau$-leaping method, a significant speed-up can be achieved for some stiff kinetic systems. The behavior of the proposed methods are tested on several numerical experiments.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2009.10-m1004}, url = {http://global-sci.org/intro/article_detail/jcm/8515.html} }Stabilized or Chebyshev explicit methods have been widely used in the past to solve stiff ordinary differential equations. Making use of special properties of Chebyshev-like polynomials, these methods have favorable stability properties compared to standard explicit methods while remaining explicit. A new class of such methods, called ROCK, introduced in [Numer. Math., 90, 1-18, 2001] has recently been extended to stiff stochastic differential equations under the name S-ROCK [C. R. Acad. Sci. Paris, 345(10), 2007 and Commun. Math. Sci, 6(4), 2008]. In this paper we discuss the extension of the S-ROCK methods to systems with discrete noise and propose a new class of methods for such problems, the $\tau$-ROCK methods. One motivation for such methods is the simulation of multi-scale or stiff chemical kinetic systems and such systems are the focus of this paper, but our new methods could potentially be interesting for other stiff systems with discrete noise. Two versions of the $\tau$-ROCK methods are discussed and their stability behavior is analyzed on a test problem. Compared to the $\tau$-leaping method, a significant speed-up can be achieved for some stiff kinetic systems. The behavior of the proposed methods are tested on several numerical experiments.