- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, three versions of WENO schemes WENO-JS, WENO-M and WENO-Z are used for one-dimensional detonation wave simulations with fifth order characteristic based spatial flux reconstruction. Numerical schemes for solving the system of hyperbolic conversation laws using the ZND analytical solution as initial condition are presented. Numerical simulations of one-dimensional detonation wave for both stable and unstable cases are performed. In the stable case with overdrive factor $f=1.8$, the temporal histories of peak pressure of the detonation front computed by WENO-JS and WENO-Z reach the theoretical steady state. In comparison, the temporal history of peak pressure computed by the WENO-M scheme fails to reach and oscillates around the theoretical steady state. In the unstable cases with overdrive factors $f=1.6$ and $f=1.3$, the results of all WENO schemes agree well with each other as the resolution, defined as the number of grid points per half-length of reaction zone, increases. Furthermore, for overdrive factor $f=1.6$, the grid convergence study demonstrates that the high order WENO schemes converge faster than other existing lower order schemes such as unsplit scheme, Roe's solver with minmod limiter and Roe's solver with superbee limiter in reaching the predicted peak pressure. For overdrive factor $f=1.3$, the temporal history of peak pressure shows an increasingly chaotic behavior even at high resolution. In the case of overdrive factor $f=1.1$, in accordance with theoretical studies, an explosion occurs and different WENO schemes leading to this explosion appear at slightly different times.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1110-m11si02}, url = {http://global-sci.org/intro/article_detail/jcm/8497.html} }In this paper, three versions of WENO schemes WENO-JS, WENO-M and WENO-Z are used for one-dimensional detonation wave simulations with fifth order characteristic based spatial flux reconstruction. Numerical schemes for solving the system of hyperbolic conversation laws using the ZND analytical solution as initial condition are presented. Numerical simulations of one-dimensional detonation wave for both stable and unstable cases are performed. In the stable case with overdrive factor $f=1.8$, the temporal histories of peak pressure of the detonation front computed by WENO-JS and WENO-Z reach the theoretical steady state. In comparison, the temporal history of peak pressure computed by the WENO-M scheme fails to reach and oscillates around the theoretical steady state. In the unstable cases with overdrive factors $f=1.6$ and $f=1.3$, the results of all WENO schemes agree well with each other as the resolution, defined as the number of grid points per half-length of reaction zone, increases. Furthermore, for overdrive factor $f=1.6$, the grid convergence study demonstrates that the high order WENO schemes converge faster than other existing lower order schemes such as unsplit scheme, Roe's solver with minmod limiter and Roe's solver with superbee limiter in reaching the predicted peak pressure. For overdrive factor $f=1.3$, the temporal history of peak pressure shows an increasingly chaotic behavior even at high resolution. In the case of overdrive factor $f=1.1$, in accordance with theoretical studies, an explosion occurs and different WENO schemes leading to this explosion appear at slightly different times.