- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This paper is concerned with the construction of accurate and efficient computational algorithms for the numerical approximation of sensitivities with respect to a parameter dependent interface location. Motivated by sensitivity analysis with respect to piezoelectric actuator placement on an Euler-Bernoulli beam, this work illustrates the key concepts related to sensitivity equation formulation for interface problems where the parameter of interest determines the location of the interface. A fourth order model problem is considered, and a homogenization procedure for sensitivity computation is constructed using standard finite element methods. Numerical results show that proper formulation and approximation of the sensitivity interface conditions is critical to obtaining convergent numerical sensitivity approximations. A second order elliptic interface model problem is also mentioned, and the homogenization procedure is outlined briefly for this model.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1006-m3119}, url = {http://global-sci.org/intro/article_detail/jcm/8467.html} }This paper is concerned with the construction of accurate and efficient computational algorithms for the numerical approximation of sensitivities with respect to a parameter dependent interface location. Motivated by sensitivity analysis with respect to piezoelectric actuator placement on an Euler-Bernoulli beam, this work illustrates the key concepts related to sensitivity equation formulation for interface problems where the parameter of interest determines the location of the interface. A fourth order model problem is considered, and a homogenization procedure for sensitivity computation is constructed using standard finite element methods. Numerical results show that proper formulation and approximation of the sensitivity interface conditions is critical to obtaining convergent numerical sensitivity approximations. A second order elliptic interface model problem is also mentioned, and the homogenization procedure is outlined briefly for this model.