- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Convergence Analysis of Spectral Methods for Integro-Differential Equations with Vanishing Proportional Delays
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-29-49,
author = {Ishtiaq Ali},
title = {Convergence Analysis of Spectral Methods for Integro-Differential Equations with Vanishing Proportional Delays},
journal = {Journal of Computational Mathematics},
year = {2011},
volume = {29},
number = {1},
pages = {49--60},
abstract = {
We describe the application of the spectral method to delay integro-differential equations with proportional delays. It is shown that the resulting numerical solutions exhibit the spectral convergence order. Extensions to equations with more general (nonlinear) vanishing delays are also discussed.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1006-m3150}, url = {http://global-sci.org/intro/article_detail/jcm/8463.html} }
TY - JOUR
T1 - Convergence Analysis of Spectral Methods for Integro-Differential Equations with Vanishing Proportional Delays
AU - Ishtiaq Ali
JO - Journal of Computational Mathematics
VL - 1
SP - 49
EP - 60
PY - 2011
DA - 2011/02
SN - 29
DO - http://doi.org/10.4208/jcm.1006-m3150
UR - https://global-sci.org/intro/article_detail/jcm/8463.html
KW - Delay integro-differential equations, Proportional delays, Spectral methods, Convergence analysis.
AB -
We describe the application of the spectral method to delay integro-differential equations with proportional delays. It is shown that the resulting numerical solutions exhibit the spectral convergence order. Extensions to equations with more general (nonlinear) vanishing delays are also discussed.
Ishtiaq Ali. (2011). Convergence Analysis of Spectral Methods for Integro-Differential Equations with Vanishing Proportional Delays.
Journal of Computational Mathematics. 29 (1).
49-60.
doi:10.4208/jcm.1006-m3150
Copy to clipboard