- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In a previous paper, some particular multistep cosine methods were constructed which proved to be very efficient because of being able to integrate in a stable and explicit way linearly stiff problems of second-order in time. In the present paper, the conditions which guarantee stability for general methods of this type are given, as well as a thorough study of resonances and filtering for symmetric ones (which, in another paper, have been proved to behave very advantageously with respect to conservation of invariants in Hamiltonian wave equations). What is given here is a systematic way to analyse and treat any of the methods of this type in the mentioned aspects.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1203-m3487}, url = {http://global-sci.org/intro/article_detail/jcm/8447.html} }In a previous paper, some particular multistep cosine methods were constructed which proved to be very efficient because of being able to integrate in a stable and explicit way linearly stiff problems of second-order in time. In the present paper, the conditions which guarantee stability for general methods of this type are given, as well as a thorough study of resonances and filtering for symmetric ones (which, in another paper, have been proved to behave very advantageously with respect to conservation of invariants in Hamiltonian wave equations). What is given here is a systematic way to analyse and treat any of the methods of this type in the mentioned aspects.