- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose a tailored finite cell method for the computation of two-dimensional Helmholtz equation in layered heterogeneous medium. The idea underlying the method is to construct a numerical scheme based on a local approximation of the solution to Helmholtz equation. This provides a computational tool of achieving high accuracy with coarse mesh even for large wave number (high frequency). The stability analysis and error estimates of this method are also proved. We present several numerical results to show its efficiency and accuracy.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1111-m3679}, url = {http://global-sci.org/intro/article_detail/jcm/8437.html} }In this paper, we propose a tailored finite cell method for the computation of two-dimensional Helmholtz equation in layered heterogeneous medium. The idea underlying the method is to construct a numerical scheme based on a local approximation of the solution to Helmholtz equation. This provides a computational tool of achieving high accuracy with coarse mesh even for large wave number (high frequency). The stability analysis and error estimates of this method are also proved. We present several numerical results to show its efficiency and accuracy.