- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
J. Comp. Math., 30 (2012), pp. 101-123.
Published online: 2012-04
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
Adaptive finite element methods for optimization problems for second order linear elliptic partial differential equations subject to pointwise constraints on the $\mathcal{ℓ}^2$-norm of the gradient of the state are considered. In a weak duality setting, i.e. without assuming a constraint qualification such as the existence of a Slater point, residual based a posteriori error estimators are derived. To overcome the lack in constraint qualification on the continuous level, the weak Fenchel dual is utilized. Several numerical tests illustrate the performance of the proposed error estimators.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1109-m3522}, url = {http://global-sci.org/intro/article_detail/jcm/8420.html} }Adaptive finite element methods for optimization problems for second order linear elliptic partial differential equations subject to pointwise constraints on the $\mathcal{ℓ}^2$-norm of the gradient of the state are considered. In a weak duality setting, i.e. without assuming a constraint qualification such as the existence of a Slater point, residual based a posteriori error estimators are derived. To overcome the lack in constraint qualification on the continuous level, the weak Fenchel dual is utilized. Several numerical tests illustrate the performance of the proposed error estimators.