- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This paper is concerned with the solvability and waveform relaxation methods of linear variable-coefficient differential-algebraic equations (DAEs). Most of the previous works have been focused on linear variable-coefficient DAEs with smooth coefficients and data, yet no results related to the convergence rate of the corresponding waveform relaxation methods has been obtained. In this paper, we develope the solvability theory for the linear variable-coefficient DAEs on Legesgue square-integrable function space in both traditional and least squares senses, and determine the convergence rate of the waveform relaxation methods for solving linear variable-coefficient DAEs.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1405-m4417}, url = {http://global-sci.org/intro/article_detail/jcm/8410.html} }This paper is concerned with the solvability and waveform relaxation methods of linear variable-coefficient differential-algebraic equations (DAEs). Most of the previous works have been focused on linear variable-coefficient DAEs with smooth coefficients and data, yet no results related to the convergence rate of the corresponding waveform relaxation methods has been obtained. In this paper, we develope the solvability theory for the linear variable-coefficient DAEs on Legesgue square-integrable function space in both traditional and least squares senses, and determine the convergence rate of the waveform relaxation methods for solving linear variable-coefficient DAEs.