- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
We discuss and analyze the virtual element method on general polygonal meshes for the time-dependent Poisson-Nernst-Planck (PNP) equations, which are a nonlinear coupled system widely used in semiconductors and ion channels. After presenting the semi-discrete scheme, the optimal $H^1$ norm error estimates are presented for the time-dependent PNP equations, which are based on some error estimates of a virtual element energy projection. The Gummel iteration is used to decouple and linearize the PNP equations and the error analysis is also given for the iteration of fully discrete virtual element approximation. The numerical experiment on different polygonal meshes verifies the theoretical convergence results and shows the efficiency of the virtual element method.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2401-m2023-0130}, url = {http://global-sci.org/intro/article_detail/jcm/23557.html} }We discuss and analyze the virtual element method on general polygonal meshes for the time-dependent Poisson-Nernst-Planck (PNP) equations, which are a nonlinear coupled system widely used in semiconductors and ion channels. After presenting the semi-discrete scheme, the optimal $H^1$ norm error estimates are presented for the time-dependent PNP equations, which are based on some error estimates of a virtual element energy projection. The Gummel iteration is used to decouple and linearize the PNP equations and the error analysis is also given for the iteration of fully discrete virtual element approximation. The numerical experiment on different polygonal meshes verifies the theoretical convergence results and shows the efficiency of the virtual element method.