- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
We present a decoupled, linearly implicit numerical scheme with energy stability and mass conservation for solving the coupled Cahn-Hilliard system. The time-discretization is done by leap-frog method with the scalar auxiliary variable (SAV) approach. It only needs to solve three linear equations at each time step, where each unknown variable can be solved independently. It is shown that the semi-discrete scheme has second-order accuracy in the temporal direction. Such convergence results are proved by a rigorous analysis of the boundedness of the numerical solution and the error estimates at different time-level. Numerical examples are presented to further confirm the validity of the methods.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2402-m2023-0079}, url = {http://global-sci.org/intro/article_detail/jcm/23556.html} }We present a decoupled, linearly implicit numerical scheme with energy stability and mass conservation for solving the coupled Cahn-Hilliard system. The time-discretization is done by leap-frog method with the scalar auxiliary variable (SAV) approach. It only needs to solve three linear equations at each time step, where each unknown variable can be solved independently. It is shown that the semi-discrete scheme has second-order accuracy in the temporal direction. Such convergence results are proved by a rigorous analysis of the boundedness of the numerical solution and the error estimates at different time-level. Numerical examples are presented to further confirm the validity of the methods.