- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
J. Comp. Math., 42 (2024), pp. 1554-1578.
Published online: 2024-11
Cited by
- BibTex
- RIS
- TXT
We propose a new method for smoothly interpolating a given set of data points on Grassmann and Stiefel manifolds using a generalization of the De Casteljau algorithm. To that end, we reduce interpolation problem to the classical Euclidean setting, allowing us to directly leverage the extensive toolbox of spline interpolation. The interpolated curve enjoy a number of nice properties: The solution exists and is optimal in many common situations. For applications, the structures with respect to chosen Riemannian metrics are detailed resulting in additional computational advantages.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2303-m2022-0201}, url = {http://global-sci.org/intro/article_detail/jcm/23507.html} }We propose a new method for smoothly interpolating a given set of data points on Grassmann and Stiefel manifolds using a generalization of the De Casteljau algorithm. To that end, we reduce interpolation problem to the classical Euclidean setting, allowing us to directly leverage the extensive toolbox of spline interpolation. The interpolated curve enjoy a number of nice properties: The solution exists and is optimal in many common situations. For applications, the structures with respect to chosen Riemannian metrics are detailed resulting in additional computational advantages.