- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
J. Comp. Math., 42 (2024), pp. 1452-1501.
Published online: 2024-11
Cited by
- BibTex
- RIS
- TXT
Optimization problem of cardinality constrained mean-variance (CCMV) model for sparse portfolio selection is considered. To overcome the difficulties caused by cardinality constraint, an exact penalty approach is employed, then CCMV problem is transferred into a difference-of-convex-functions (DC) problem. By exploiting the DC structure of the gained problem and the superlinear convergence of semismooth Newton (ssN) method, an inexact proximal DC algorithm with sieving strategy based on a majorized ssN method (siPDCA-mssN) is proposed. For solving the inner problems of siPDCA-mssN from dual, the second-order information is wisely incorporated and an efficient mssN method is employed. The global convergence of the sequence generated by siPDCA-mssN is proved. To solve large-scale CCMV problem, a decomposed siPDCA-mssN (DsiPDCA-mssN) is introduced. To demonstrate the efficiency of proposed algorithms, siPDCA-mssN and DsiPDCA-mssN are compared with the penalty proximal alternating linearized minimization method and the CPLEX(12.9) solver by performing numerical experiments on real-word market data and large-scale simulated data. The numerical results demonstrate that siPDCA-mssN and DsiPDCA-mssN outperform the other methods from computation time and optimal value. The out-of-sample experiments results display that the solutions of CCMV model are better than those of other portfolio selection models in terms of Sharp ratio and sparsity.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2207-m2021-0349}, url = {http://global-sci.org/intro/article_detail/jcm/23504.html} }Optimization problem of cardinality constrained mean-variance (CCMV) model for sparse portfolio selection is considered. To overcome the difficulties caused by cardinality constraint, an exact penalty approach is employed, then CCMV problem is transferred into a difference-of-convex-functions (DC) problem. By exploiting the DC structure of the gained problem and the superlinear convergence of semismooth Newton (ssN) method, an inexact proximal DC algorithm with sieving strategy based on a majorized ssN method (siPDCA-mssN) is proposed. For solving the inner problems of siPDCA-mssN from dual, the second-order information is wisely incorporated and an efficient mssN method is employed. The global convergence of the sequence generated by siPDCA-mssN is proved. To solve large-scale CCMV problem, a decomposed siPDCA-mssN (DsiPDCA-mssN) is introduced. To demonstrate the efficiency of proposed algorithms, siPDCA-mssN and DsiPDCA-mssN are compared with the penalty proximal alternating linearized minimization method and the CPLEX(12.9) solver by performing numerical experiments on real-word market data and large-scale simulated data. The numerical results demonstrate that siPDCA-mssN and DsiPDCA-mssN outperform the other methods from computation time and optimal value. The out-of-sample experiments results display that the solutions of CCMV model are better than those of other portfolio selection models in terms of Sharp ratio and sparsity.