- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
J. Comp. Math., 42 (2024), pp. 1328-1355.
Published online: 2024-07
Cited by
- BibTex
- RIS
- TXT
In this paper two dimensional elliptic interface problem with imperfect contact is considered, which is featured by the implicit jump condition imposed on the imperfect contact interface, and the jumping quantity of the unknown is related to the flux across the interface. A finite difference method is constructed for the 2D elliptic interface problems with straight and curve interface shapes. Then, the stability and convergence analysis are given for the constructed scheme. Further, in particular case, it is proved to be monotone. Numerical examples for elliptic interface problems with straight and curve interface shapes are tested to verify the performance of the scheme. The numerical results demonstrate that it obtains approximately second-order accuracy for elliptic interface equations with implicit jump condition.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2302-m2022-0111}, url = {http://global-sci.org/intro/article_detail/jcm/23280.html} }In this paper two dimensional elliptic interface problem with imperfect contact is considered, which is featured by the implicit jump condition imposed on the imperfect contact interface, and the jumping quantity of the unknown is related to the flux across the interface. A finite difference method is constructed for the 2D elliptic interface problems with straight and curve interface shapes. Then, the stability and convergence analysis are given for the constructed scheme. Further, in particular case, it is proved to be monotone. Numerical examples for elliptic interface problems with straight and curve interface shapes are tested to verify the performance of the scheme. The numerical results demonstrate that it obtains approximately second-order accuracy for elliptic interface equations with implicit jump condition.