- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
J. Comp. Math., 42 (2024), pp. 1277-1304.
Published online: 2024-07
Cited by
- BibTex
- RIS
- TXT
We propose a simple iterative (SI) algorithm for the maxcut problem through fully using an equivalent continuous formulation. It does not need rounding at all and has advantages that all subproblems have explicit analytic solutions, the cut values are monotonically updated and the iteration points converge to a local optima in finite steps via an appropriate subgradient selection. Numerical experiments on G-set demonstrate the performance. In particular, the ratios between the best cut values achieved by SI and those by some advanced combinatorial algorithms in [Ann. Oper. Res., 248 (2017), 365–403] are at least 0.986 and can be further improved to at least 0.997 by a preliminary attempt to break out of local optima.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2303-m2021-0309}, url = {http://global-sci.org/intro/article_detail/jcm/23278.html} }We propose a simple iterative (SI) algorithm for the maxcut problem through fully using an equivalent continuous formulation. It does not need rounding at all and has advantages that all subproblems have explicit analytic solutions, the cut values are monotonically updated and the iteration points converge to a local optima in finite steps via an appropriate subgradient selection. Numerical experiments on G-set demonstrate the performance. In particular, the ratios between the best cut values achieved by SI and those by some advanced combinatorial algorithms in [Ann. Oper. Res., 248 (2017), 365–403] are at least 0.986 and can be further improved to at least 0.997 by a preliminary attempt to break out of local optima.