- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
J. Comp. Math., 42 (2024), pp. 1197-1225.
Published online: 2024-07
Cited by
- BibTex
- RIS
- TXT
Generalized Bézier surfaces are a multi-sided generalization of classical tensor product Bézier surfaces with a simple control structure and inherit most of the appealing properties from Bézier surfaces. However, the original degree elevation changes the geometry of generalized Bézier surfaces such that it is undesirable in many applications, e.g. isogeometric analysis. In this paper, we propose an improved degree elevation algorithm for generalized Bézier surfaces preserving not only geometric consistency but also parametric consistency. Based on the knot insertion of B-splines, a novel knot insertion algorithm for generalized Bézier surfaces is also proposed. Then the proposed algorithms are employed to increase degrees of freedom for multi-sided computational domains parameterized by generalized Bézier surfaces in isogeometric analysis, corresponding to the traditional $p$-, $h$-, and $k$-refinements. Numerical examples demonstrate the effectiveness and superiority of our method.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2301-m2022-0116}, url = {http://global-sci.org/intro/article_detail/jcm/23275.html} }Generalized Bézier surfaces are a multi-sided generalization of classical tensor product Bézier surfaces with a simple control structure and inherit most of the appealing properties from Bézier surfaces. However, the original degree elevation changes the geometry of generalized Bézier surfaces such that it is undesirable in many applications, e.g. isogeometric analysis. In this paper, we propose an improved degree elevation algorithm for generalized Bézier surfaces preserving not only geometric consistency but also parametric consistency. Based on the knot insertion of B-splines, a novel knot insertion algorithm for generalized Bézier surfaces is also proposed. Then the proposed algorithms are employed to increase degrees of freedom for multi-sided computational domains parameterized by generalized Bézier surfaces in isogeometric analysis, corresponding to the traditional $p$-, $h$-, and $k$-refinements. Numerical examples demonstrate the effectiveness and superiority of our method.