- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Arbitrarily High-Order Energy-Conserving Methods for Hamiltonian Problems with Quadratic Holonomic Constraints
J. Comp. Math., 42 (2024), pp. 1145-1171.
Published online: 2024-04
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-42-1145,
author = {Amodio , PierluigiBrugnano , LuigiFrasca-Caccia , Gianluca and Iavernaro , Felice},
title = {Arbitrarily High-Order Energy-Conserving Methods for Hamiltonian Problems with Quadratic Holonomic Constraints},
journal = {Journal of Computational Mathematics},
year = {2024},
volume = {42},
number = {4},
pages = {1145--1171},
abstract = {
In this paper, we define arbitrarily high-order energy-conserving methods for Hamiltonian systems with quadratic holonomic constraints. The derivation of the methods is made within the so-called line integral framework. Numerical tests to illustrate the theoretical findings are presented.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2301-m2022-0065}, url = {http://global-sci.org/intro/article_detail/jcm/23050.html} }
TY - JOUR
T1 - Arbitrarily High-Order Energy-Conserving Methods for Hamiltonian Problems with Quadratic Holonomic Constraints
AU - Amodio , Pierluigi
AU - Brugnano , Luigi
AU - Frasca-Caccia , Gianluca
AU - Iavernaro , Felice
JO - Journal of Computational Mathematics
VL - 4
SP - 1145
EP - 1171
PY - 2024
DA - 2024/04
SN - 42
DO - http://doi.org/10.4208/jcm.2301-m2022-0065
UR - https://global-sci.org/intro/article_detail/jcm/23050.html
KW - Constrained Hamiltonian systems, Quadratic holonomic constraints, Energy-conserving methods, Line integral methods, Hamiltonian Boundary Value Methods, HBVMs.
AB -
In this paper, we define arbitrarily high-order energy-conserving methods for Hamiltonian systems with quadratic holonomic constraints. The derivation of the methods is made within the so-called line integral framework. Numerical tests to illustrate the theoretical findings are presented.
Amodio , PierluigiBrugnano , LuigiFrasca-Caccia , Gianluca and Iavernaro , Felice. (2024). Arbitrarily High-Order Energy-Conserving Methods for Hamiltonian Problems with Quadratic Holonomic Constraints.
Journal of Computational Mathematics. 42 (4).
1145-1171.
doi:10.4208/jcm.2301-m2022-0065
Copy to clipboard