- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Asymptotic theory for the circuit envelope analysis is developed in this paper. A typical feature of circuit envelope analysis is the existence of two significantly distinct timescales: one is the fast timescale of carrier wave, and the other is the slow timescale of modulation signal. We first perform pro forma asymptotic analysis for both the driven and autonomous systems. Then resorting to the Floquet theory of periodic operators, we make a rigorous justification for first-order asymptotic approximations. It turns out that these asymptotic results are valid at least on the slow timescale. To speed up the computation of asymptotic approximations, we propose a periodization technique, which renders the possibility of utilizing the NUFFT algorithm. Numerical experiments are presented, and the results validate the theoretical findings.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2301-m2022-0208}, url = {http://global-sci.org/intro/article_detail/jcm/23042.html} }Asymptotic theory for the circuit envelope analysis is developed in this paper. A typical feature of circuit envelope analysis is the existence of two significantly distinct timescales: one is the fast timescale of carrier wave, and the other is the slow timescale of modulation signal. We first perform pro forma asymptotic analysis for both the driven and autonomous systems. Then resorting to the Floquet theory of periodic operators, we make a rigorous justification for first-order asymptotic approximations. It turns out that these asymptotic results are valid at least on the slow timescale. To speed up the computation of asymptotic approximations, we propose a periodization technique, which renders the possibility of utilizing the NUFFT algorithm. Numerical experiments are presented, and the results validate the theoretical findings.