- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
A Riemannian gradient descent algorithm and a truncated variant are presented to solve systems of phaseless equations $|Ax|^2=y.$ The algorithms are developed by exploiting the inherent low rank structure of the problem based on the embedded manifold of rank-1 positive semidefinite matrices. Theoretical recovery guarantee has been established for the truncated variant, showing that the algorithm is able to achieve successful recovery when the number of equations is proportional to the number of unknowns. Two key ingredients in the analysis are the restricted well conditioned property and the restricted weak correlation property of the associated truncated linear operator. Empirical evaluations show that our algorithms are competitive with other state-of-the-art first order nonconvex approaches with provable guarantees.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2207-m2021-0247}, url = {http://global-sci.org/intro/article_detail/jcm/23035.html} }A Riemannian gradient descent algorithm and a truncated variant are presented to solve systems of phaseless equations $|Ax|^2=y.$ The algorithms are developed by exploiting the inherent low rank structure of the problem based on the embedded manifold of rank-1 positive semidefinite matrices. Theoretical recovery guarantee has been established for the truncated variant, showing that the algorithm is able to achieve successful recovery when the number of equations is proportional to the number of unknowns. Two key ingredients in the analysis are the restricted well conditioned property and the restricted weak correlation property of the associated truncated linear operator. Empirical evaluations show that our algorithms are competitive with other state-of-the-art first order nonconvex approaches with provable guarantees.