- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we offer a new sparse recovery strategy based on the generalized error function. The introduced penalty function involves both the shape and the scale parameters, making it extremely flexible. For both constrained and unconstrained models, the theoretical analysis results in terms of the null space property, the spherical section property and the restricted invertibility factor are established. The practical algorithms via both the iteratively reweighted $ℓ_1$ and the difference of convex functions algorithms are presented. Numerical experiments are carried out to demonstrate the benefits of the suggested approach in a variety of circumstances. Its practical application in magnetic resonance imaging (MRI) reconstruction is also investigated.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2204-m2021-0288}, url = {http://global-sci.org/intro/article_detail/jcm/23032.html} }In this paper, we offer a new sparse recovery strategy based on the generalized error function. The introduced penalty function involves both the shape and the scale parameters, making it extremely flexible. For both constrained and unconstrained models, the theoretical analysis results in terms of the null space property, the spherical section property and the restricted invertibility factor are established. The practical algorithms via both the iteratively reweighted $ℓ_1$ and the difference of convex functions algorithms are presented. Numerical experiments are carried out to demonstrate the benefits of the suggested approach in a variety of circumstances. Its practical application in magnetic resonance imaging (MRI) reconstruction is also investigated.