- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, a multirate time iterative scheme with multiphysics finite element method is proposed and analyzed for the nonlinear poroelasticity model. The original problem is reformulated into a generalized nonlinear Stokes problem coupled with a diffusion problem of a pseudo pressure field by a new multiphysics approach. A multiphysics finite element method is adopted for the spatial discretization, and the generalized nonlinear Stokes problem is solved in a coarse time step and the diffusion problem is solved in a finer time step. The proposed algorithm is a decoupled algorithm, which is easily implemented in computation and reduces greatly computation cost. The stability analysis and the convergence analysis for the multirate iterative scheme with multiphysics finite element method are given. Some numerical tests are shown to demonstrate and validate the analysis results.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2207-m2021-0373}, url = {http://global-sci.org/intro/article_detail/jcm/22893.html} }In this paper, a multirate time iterative scheme with multiphysics finite element method is proposed and analyzed for the nonlinear poroelasticity model. The original problem is reformulated into a generalized nonlinear Stokes problem coupled with a diffusion problem of a pseudo pressure field by a new multiphysics approach. A multiphysics finite element method is adopted for the spatial discretization, and the generalized nonlinear Stokes problem is solved in a coarse time step and the diffusion problem is solved in a finer time step. The proposed algorithm is a decoupled algorithm, which is easily implemented in computation and reduces greatly computation cost. The stability analysis and the convergence analysis for the multirate iterative scheme with multiphysics finite element method are given. Some numerical tests are shown to demonstrate and validate the analysis results.