- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This paper considers a corrupted compressed sensing problem and is devoted to recover signals that are approximately sparse in some general dictionary but corrupted by a combination of interference having a sparse representation in a second general dictionary and measurement noise. We provide new restricted isometry property (RIP) analysis to achieve stable recovery of sparsely corrupted signals through Justice Pursuit De-Noising (JPDN) with an additional parameter. Our main tool is to adapt a crucial sparse decomposition technique to the analysis of the Justice Pursuit method. The proposed RIP condition improves the existing representative results. Numerical simulations are provided to verify the reliability of the JPDN model.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2204-m2021-0333}, url = {http://global-sci.org/intro/article_detail/jcm/22160.html} }This paper considers a corrupted compressed sensing problem and is devoted to recover signals that are approximately sparse in some general dictionary but corrupted by a combination of interference having a sparse representation in a second general dictionary and measurement noise. We provide new restricted isometry property (RIP) analysis to achieve stable recovery of sparsely corrupted signals through Justice Pursuit De-Noising (JPDN) with an additional parameter. Our main tool is to adapt a crucial sparse decomposition technique to the analysis of the Justice Pursuit method. The proposed RIP condition improves the existing representative results. Numerical simulations are provided to verify the reliability of the JPDN model.