- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we first present the optimal error estimates of the semi-discrete ultra-weak discontinuous Galerkin method for solving one-dimensional linear convection-diffusion equations. Then, coupling with a kind of Runge-Kutta type implicit-explicit time discretization which treats the convection term explicitly and the diffusion term implicitly, we analyze the stability and error estimates of the corresponding fully discrete schemes. The fully discrete schemes are proved to be stable if the time-step $\tau ≤ \tau_0,$ where $\tau_0$ is a constant independent of the mesh-size $h.$ Furthermore, by the aid of a special projection and a careful estimate for the convection term, the optimal error estimate is also obtained for the third order fully discrete scheme. Numerical experiments are displayed to verify the theoretical results.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2202-m2021-0290}, url = {http://global-sci.org/intro/article_detail/jcm/22150.html} }In this paper, we first present the optimal error estimates of the semi-discrete ultra-weak discontinuous Galerkin method for solving one-dimensional linear convection-diffusion equations. Then, coupling with a kind of Runge-Kutta type implicit-explicit time discretization which treats the convection term explicitly and the diffusion term implicitly, we analyze the stability and error estimates of the corresponding fully discrete schemes. The fully discrete schemes are proved to be stable if the time-step $\tau ≤ \tau_0,$ where $\tau_0$ is a constant independent of the mesh-size $h.$ Furthermore, by the aid of a special projection and a careful estimate for the convection term, the optimal error estimate is also obtained for the third order fully discrete scheme. Numerical experiments are displayed to verify the theoretical results.