- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
J. Comp. Math., 41 (2023), pp. 1222-1245.
Published online: 2023-11
Cited by
- BibTex
- RIS
- TXT
We propose a multiscale projection method for the numerical solution of the irtatively regularized Gauss-Newton method of nonlinear integral equations. An a posteriori rule is suggested to choose the stopping index of iteration and the rates of convergence are also derived under the Lipschitz condition. Numerical results are presented to demonstrate the efficiency and accuracy of the proposed method.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2202-m2021-0206}, url = {http://global-sci.org/intro/article_detail/jcm/22110.html} }We propose a multiscale projection method for the numerical solution of the irtatively regularized Gauss-Newton method of nonlinear integral equations. An a posteriori rule is suggested to choose the stopping index of iteration and the rates of convergence are also derived under the Lipschitz condition. Numerical results are presented to demonstrate the efficiency and accuracy of the proposed method.