- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
J. Comp. Math., 41 (2023), pp. 1137-1170.
Published online: 2023-11
Cited by
- BibTex
- RIS
- TXT
In the existing work, the recovery of strictly $k$-sparse signals with partial support information was derived in the $ℓ_2$ bounded noise setting. In this paper, the recovery of approximately $k$-sparse signals with partial support information in two noise settings is investigated via weighted $ℓ_p \ (0 < p ≤ 1)$ minimization method. The restricted isometry constant (RIC) condition $δ_{tk} <\frac{1}{pη^{ \frac{2}{p}−1} +1}$ on the measurement matrix for some $t ∈ [1+\frac{ 2−p}{ 2+p} σ, 2]$ is proved to be sufficient to guarantee the stable and robust recovery of signals under sparsity defect in noisy cases. Herein, $σ ∈ [0, 1]$ is a parameter related to the prior support information of the original signal, and $η ≥ 0$ is determined by $p,$ $t$ and $σ.$ The new results not only improve the recent work in [17], but also include the optimal results by weighted $ℓ_1$ minimization or by standard $ℓ_p$ minimization as special cases.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2207-m2022-0058}, url = {http://global-sci.org/intro/article_detail/jcm/22107.html} }In the existing work, the recovery of strictly $k$-sparse signals with partial support information was derived in the $ℓ_2$ bounded noise setting. In this paper, the recovery of approximately $k$-sparse signals with partial support information in two noise settings is investigated via weighted $ℓ_p \ (0 < p ≤ 1)$ minimization method. The restricted isometry constant (RIC) condition $δ_{tk} <\frac{1}{pη^{ \frac{2}{p}−1} +1}$ on the measurement matrix for some $t ∈ [1+\frac{ 2−p}{ 2+p} σ, 2]$ is proved to be sufficient to guarantee the stable and robust recovery of signals under sparsity defect in noisy cases. Herein, $σ ∈ [0, 1]$ is a parameter related to the prior support information of the original signal, and $η ≥ 0$ is determined by $p,$ $t$ and $σ.$ The new results not only improve the recent work in [17], but also include the optimal results by weighted $ℓ_1$ minimization or by standard $ℓ_p$ minimization as special cases.