- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
J. Comp. Math., 41 (2023), pp. 1017-1040.
Published online: 2023-11
Cited by
- BibTex
- RIS
- TXT
The Peaceman-Rachford splitting method is efficient for minimizing a convex optimization problem with a separable objective function and linear constraints. However, its convergence was not guaranteed without extra requirements. He et al. (SIAM J. Optim. 24: 1011-1040, 2014) proved the convergence of a strictly contractive Peaceman-Rachford splitting method by employing a suitable underdetermined relaxation factor. In this paper, we further extend the so-called strictly contractive Peaceman-Rachford splitting method by using two different relaxation factors. Besides, motivated by the recent advances on the ADMM type method with indefinite proximal terms, we employ the indefinite proximal term in the strictly contractive Peaceman-Rachford splitting method. We show that the proposed indefinite-proximal strictly contractive Peaceman-Rachford splitting method is convergent and also prove the $o(1/t)$ convergence rate in the nonergodic sense. The numerical tests on the $l_1$ regularized least square problem demonstrate the efficiency of the proposed method.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2112-m2020-0023}, url = {http://global-sci.org/intro/article_detail/jcm/22102.html} }The Peaceman-Rachford splitting method is efficient for minimizing a convex optimization problem with a separable objective function and linear constraints. However, its convergence was not guaranteed without extra requirements. He et al. (SIAM J. Optim. 24: 1011-1040, 2014) proved the convergence of a strictly contractive Peaceman-Rachford splitting method by employing a suitable underdetermined relaxation factor. In this paper, we further extend the so-called strictly contractive Peaceman-Rachford splitting method by using two different relaxation factors. Besides, motivated by the recent advances on the ADMM type method with indefinite proximal terms, we employ the indefinite proximal term in the strictly contractive Peaceman-Rachford splitting method. We show that the proposed indefinite-proximal strictly contractive Peaceman-Rachford splitting method is convergent and also prove the $o(1/t)$ convergence rate in the nonergodic sense. The numerical tests on the $l_1$ regularized least square problem demonstrate the efficiency of the proposed method.