- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
A simple criterion is studied for the first time for identifying the discrete energy dissipation of the Crank-Nicolson scheme for Maxwell’s equations in a Cole-Cole dispersive medium. Several numerical formulas that approximate the time fractional derivatives are investigated based on this criterion, including the L1 formula, the fractional BDF-2, and the shifted fractional trapezoidal rule (SFTR). Detailed error analysis is provided within the framework of time domain mixed finite element methods for smooth solutions. The convergence results and discrete energy dissipation law are confirmed by numerical tests. For nonsmooth solutions, the method SFTR can still maintain the optimal convergence order at a positive time on uniform meshes. Authors believe this is the first appearance that a second-order time-stepping method can restore the optimal convergence rate for Maxwell's equations in a Cole-Cole dispersive medium regardless of the initial singularity of the solution.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2210-m2021-0257}, url = {http://global-sci.org/intro/article_detail/jcm/22017.html} }A simple criterion is studied for the first time for identifying the discrete energy dissipation of the Crank-Nicolson scheme for Maxwell’s equations in a Cole-Cole dispersive medium. Several numerical formulas that approximate the time fractional derivatives are investigated based on this criterion, including the L1 formula, the fractional BDF-2, and the shifted fractional trapezoidal rule (SFTR). Detailed error analysis is provided within the framework of time domain mixed finite element methods for smooth solutions. The convergence results and discrete energy dissipation law are confirmed by numerical tests. For nonsmooth solutions, the method SFTR can still maintain the optimal convergence order at a positive time on uniform meshes. Authors believe this is the first appearance that a second-order time-stepping method can restore the optimal convergence rate for Maxwell's equations in a Cole-Cole dispersive medium regardless of the initial singularity of the solution.