- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
The purpose of this paper is to verify that the computational scheme from [Heid et al., Gradient flow finite element discretizations with energy-based adaptivity for the Gross-Pitaevskii equation, J. Comput. Phys. 436 (2021)] for the numerical approximation of the ground state of the Gross-Pitaevskii equation can equally be applied for the effective approximation of excited states of Schrödinger's equation. That procedure employs an adaptive interplay of a Sobolev gradient flow iteration and a novel local mesh refinement strategy, and yields a guaranteed energy decay in each step of the algorithm. The computational tests in the present work highlight that this strategy is indeed able to approximate excited states, with (almost) optimal convergence rate with respect to the number of degrees of freedom.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2207-m2020-0302}, url = {http://global-sci.org/intro/article_detail/jcm/21680.html} }The purpose of this paper is to verify that the computational scheme from [Heid et al., Gradient flow finite element discretizations with energy-based adaptivity for the Gross-Pitaevskii equation, J. Comput. Phys. 436 (2021)] for the numerical approximation of the ground state of the Gross-Pitaevskii equation can equally be applied for the effective approximation of excited states of Schrödinger's equation. That procedure employs an adaptive interplay of a Sobolev gradient flow iteration and a novel local mesh refinement strategy, and yields a guaranteed energy decay in each step of the algorithm. The computational tests in the present work highlight that this strategy is indeed able to approximate excited states, with (almost) optimal convergence rate with respect to the number of degrees of freedom.