- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
We propose a trust-region type method for a class of nonsmooth nonconvex optimization problems where the objective function is a summation of a (probably nonconvex) smooth function and a (probably nonsmooth) convex function. The model function of our trust-region subproblem is always quadratic and the linear term of the model is generated using abstract descent directions. Therefore, the trust-region subproblems can be easily constructed as well as efficiently solved by cheap and standard methods. When the accuracy of the model function at the solution of the subproblem is not sufficient, we add a safeguard on the stepsizes for improving the accuracy. For a class of functions that can be "truncated'', an additional truncation step is defined and a stepsize modification strategy is designed. The overall scheme converges globally and we establish fast local convergence under suitable assumptions. In particular, using a connection with a smooth Riemannian trust-region method, we prove local quadratic convergence for partly smooth functions under a strict complementary condition. Preliminary numerical results on a family of $\ell_1$-optimization problems are reported and demonstrate the efficiency of our approach.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2110-m2020-0317}, url = {http://global-sci.org/intro/article_detail/jcm/21411.html} }We propose a trust-region type method for a class of nonsmooth nonconvex optimization problems where the objective function is a summation of a (probably nonconvex) smooth function and a (probably nonsmooth) convex function. The model function of our trust-region subproblem is always quadratic and the linear term of the model is generated using abstract descent directions. Therefore, the trust-region subproblems can be easily constructed as well as efficiently solved by cheap and standard methods. When the accuracy of the model function at the solution of the subproblem is not sufficient, we add a safeguard on the stepsizes for improving the accuracy. For a class of functions that can be "truncated'', an additional truncation step is defined and a stepsize modification strategy is designed. The overall scheme converges globally and we establish fast local convergence under suitable assumptions. In particular, using a connection with a smooth Riemannian trust-region method, we prove local quadratic convergence for partly smooth functions under a strict complementary condition. Preliminary numerical results on a family of $\ell_1$-optimization problems are reported and demonstrate the efficiency of our approach.