- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we consider the generalized Nash equilibrium with shared constraints in the stochastic environment, and we call it the stochastic generalized Nash equilibrium. The stochastic variational inequalities are employed to solve this kind of problems, and the expected residual minimization model and the conditional value-at-risk formulations defined by the residual function for the stochastic variational inequalities are discussed. We show the risk for different kinds of solutions for the stochastic generalized Nash equilibrium by the conditional value-at-risk formulations. The properties of the stochastic quadratic generalized Nash equilibrium are shown. The smoothing approximations for the expected residual minimization formulation and the conditional value-at-risk formulation are employed. Moreover, we establish the gradient consistency for the measurable smoothing functions and the integrable functions under some suitable conditions, and we also analyze the properties of the formulations. Numerical results for the applications arising from the electricity market model illustrate that the solutions for the stochastic generalized Nash equilibrium given by the ERM model have good properties, such as robustness, low risk and so on.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2109-m2020-0099}, url = {http://global-sci.org/intro/article_detail/jcm/21391.html} }In this paper, we consider the generalized Nash equilibrium with shared constraints in the stochastic environment, and we call it the stochastic generalized Nash equilibrium. The stochastic variational inequalities are employed to solve this kind of problems, and the expected residual minimization model and the conditional value-at-risk formulations defined by the residual function for the stochastic variational inequalities are discussed. We show the risk for different kinds of solutions for the stochastic generalized Nash equilibrium by the conditional value-at-risk formulations. The properties of the stochastic quadratic generalized Nash equilibrium are shown. The smoothing approximations for the expected residual minimization formulation and the conditional value-at-risk formulation are employed. Moreover, we establish the gradient consistency for the measurable smoothing functions and the integrable functions under some suitable conditions, and we also analyze the properties of the formulations. Numerical results for the applications arising from the electricity market model illustrate that the solutions for the stochastic generalized Nash equilibrium given by the ERM model have good properties, such as robustness, low risk and so on.