- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
The focus of this paper is on a linearized backward differential formula (BDF) scheme with Galerkin FEM for the nonlinear Klein-Gordon-Schrödinger equations (KGSEs) with damping mechanism. Optimal error estimates and superconvergence results are proved without any time-step restriction condition for the proposed scheme. The proof consists of three ingredients. First, a temporal-spatial error splitting argument is employed to bound the numerical solution in certain strong norms. Second, optimal error estimates are derived through a novel splitting technique to deal with the time derivative and some sharp estimates to cope with the nonlinear terms. Third, by virtue of the relationship between the Ritz projection and the interpolation, as well as a so-called "lifting'' technique, the superconvergence behavior of order $O(h^2+\tau^2)$ in $H^1$-norm for the original variables are deduced. Finally, a numerical experiment is conducted to confirm our theoretical analysis. Here, $h$ is the spatial subdivision parameter, and $\tau$ is the time step.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2108-m2020-0324}, url = {http://global-sci.org/intro/article_detail/jcm/21178.html} }The focus of this paper is on a linearized backward differential formula (BDF) scheme with Galerkin FEM for the nonlinear Klein-Gordon-Schrödinger equations (KGSEs) with damping mechanism. Optimal error estimates and superconvergence results are proved without any time-step restriction condition for the proposed scheme. The proof consists of three ingredients. First, a temporal-spatial error splitting argument is employed to bound the numerical solution in certain strong norms. Second, optimal error estimates are derived through a novel splitting technique to deal with the time derivative and some sharp estimates to cope with the nonlinear terms. Third, by virtue of the relationship between the Ritz projection and the interpolation, as well as a so-called "lifting'' technique, the superconvergence behavior of order $O(h^2+\tau^2)$ in $H^1$-norm for the original variables are deduced. Finally, a numerical experiment is conducted to confirm our theoretical analysis. Here, $h$ is the spatial subdivision parameter, and $\tau$ is the time step.