- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose a Quasi-Orthogonal Matching Pursuit (QOMP) algorithm for constructing a sparse approximation of functions in terms of expansion by orthonormal polynomials. For the two kinds of sampled data, data with noises and without noises, we apply the mutual coherence of measurement matrix to establish the convergence of the QOMP algorithm which can reconstruct $s$-sparse Legendre polynomials, Chebyshev polynomials and trigonometric polynomials in $s$ step iterations. The results are also extended to general bounded orthogonal system including tensor product of these three univariate orthogonal polynomials. Finally, numerical experiments will be presented to verify the effectiveness of the QOMP method.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2104-m2020-0250}, url = {http://global-sci.org/intro/article_detail/jcm/21168.html} }In this paper, we propose a Quasi-Orthogonal Matching Pursuit (QOMP) algorithm for constructing a sparse approximation of functions in terms of expansion by orthonormal polynomials. For the two kinds of sampled data, data with noises and without noises, we apply the mutual coherence of measurement matrix to establish the convergence of the QOMP algorithm which can reconstruct $s$-sparse Legendre polynomials, Chebyshev polynomials and trigonometric polynomials in $s$ step iterations. The results are also extended to general bounded orthogonal system including tensor product of these three univariate orthogonal polynomials. Finally, numerical experiments will be presented to verify the effectiveness of the QOMP method.