- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we consider the knot placement problem in B-spline curve approximation. A novel two-stage framework is proposed for addressing this problem. In the first step, the $l_{\infty, 1}$-norm model is introduced for the sparse selection of candidate knots from an initial knot vector. By this step, the knot number is determined. In the second step, knot positions are formulated into a nonlinear optimization problem and optimized by a global optimization algorithm — the differential evolution algorithm (DE). The candidate knots selected in the first step are served for initial values of the DE algorithm. Since the candidate knots provide a good guess of knot positions, the DE algorithm can quickly converge. One advantage of the proposed algorithm is that the knot number and knot positions are determined automatically. Compared with the current existing algorithms, the proposed algorithm finds approximations with smaller fitting error when the knot number is fixed in advance. Furthermore, the proposed algorithm is robust to noisy data and can handle with few data points. We illustrate with some examples and applications.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2012-m2020-0203}, url = {http://global-sci.org/intro/article_detail/jcm/20502.html} }In this paper, we consider the knot placement problem in B-spline curve approximation. A novel two-stage framework is proposed for addressing this problem. In the first step, the $l_{\infty, 1}$-norm model is introduced for the sparse selection of candidate knots from an initial knot vector. By this step, the knot number is determined. In the second step, knot positions are formulated into a nonlinear optimization problem and optimized by a global optimization algorithm — the differential evolution algorithm (DE). The candidate knots selected in the first step are served for initial values of the DE algorithm. Since the candidate knots provide a good guess of knot positions, the DE algorithm can quickly converge. One advantage of the proposed algorithm is that the knot number and knot positions are determined automatically. Compared with the current existing algorithms, the proposed algorithm finds approximations with smaller fitting error when the knot number is fixed in advance. Furthermore, the proposed algorithm is robust to noisy data and can handle with few data points. We illustrate with some examples and applications.