- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, based on discrete gradient, a dissipation-preserving integrator for weakly dissipative perturbations of oscillatory Hamiltonian system is established. The solution of this system is a damped nonlinear oscillator. Basically, lots of nonlinear oscillatory mechanical systems including frictional forces lend themselves to this approach. The new integrator gives a discrete analogue of the dissipation property of the original system. Meanwhile, since the integrator is based on the variation-of-constants formula for oscillatory systems, it preserves the oscillatory structure of the system. Some properties of the new integrator are derived. The convergence is analyzed for the implicit iterations based on the discrete gradient integrator, and it turns out that the convergence of the implicit iterations based on the new integrator is independent of $\|M\|$, where $M$ governs the main oscillation of the system and usually $\|M\|\gg1$. This significant property shows that a larger stepsize can be chosen for the new schemes than that for the traditional discrete gradient integrators when applied to the oscillatory Hamiltonian system. Numerical experiments are carried out to show the effectiveness and efficiency of the new integrator in comparison with the traditional discrete gradient methods in the scientific literature.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2011-m2019-0272}, url = {http://global-sci.org/intro/article_detail/jcm/20501.html} }In this paper, based on discrete gradient, a dissipation-preserving integrator for weakly dissipative perturbations of oscillatory Hamiltonian system is established. The solution of this system is a damped nonlinear oscillator. Basically, lots of nonlinear oscillatory mechanical systems including frictional forces lend themselves to this approach. The new integrator gives a discrete analogue of the dissipation property of the original system. Meanwhile, since the integrator is based on the variation-of-constants formula for oscillatory systems, it preserves the oscillatory structure of the system. Some properties of the new integrator are derived. The convergence is analyzed for the implicit iterations based on the discrete gradient integrator, and it turns out that the convergence of the implicit iterations based on the new integrator is independent of $\|M\|$, where $M$ governs the main oscillation of the system and usually $\|M\|\gg1$. This significant property shows that a larger stepsize can be chosen for the new schemes than that for the traditional discrete gradient integrators when applied to the oscillatory Hamiltonian system. Numerical experiments are carried out to show the effectiveness and efficiency of the new integrator in comparison with the traditional discrete gradient methods in the scientific literature.