- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we present the backward stochastic Taylor expansions for a Ito process, including backward Ito-Taylor expansions and backward Stratonovich-Taylor expansions. We construct the general full implicit strong Taylor approximations (including Ito-Taylor and Stratonovich-Taylor schemes) with implicitness in both the deterministic and the stochastic terms for the stiff stochastic differential equations (SSDE) by employing truncations of backward stochastic Taylor expansions. We demonstrate that these schemes will converge strongly with corresponding order $1,2,3,\ldots$ Mean-square stability has been investigated for full implicit strong Stratonovich-Taylor scheme with order $2$, and it has larger mean-square stability region than the explicit and the semi-implicit strong Stratonovich-Taylor schemes with order $2$. We can improve the stability of simulations considerably without too much additional computational effort by using our full implicit schemes. The full implicit strong Taylor schemes allow a larger range of time step sizes than other schemes and are suitable for SSDE with stiffness on both the drift and the diffusion terms. Our numerical experiment shows these points.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2011-m2019-0174}, url = {http://global-sci.org/intro/article_detail/jcm/20500.html} }In this paper, we present the backward stochastic Taylor expansions for a Ito process, including backward Ito-Taylor expansions and backward Stratonovich-Taylor expansions. We construct the general full implicit strong Taylor approximations (including Ito-Taylor and Stratonovich-Taylor schemes) with implicitness in both the deterministic and the stochastic terms for the stiff stochastic differential equations (SSDE) by employing truncations of backward stochastic Taylor expansions. We demonstrate that these schemes will converge strongly with corresponding order $1,2,3,\ldots$ Mean-square stability has been investigated for full implicit strong Stratonovich-Taylor scheme with order $2$, and it has larger mean-square stability region than the explicit and the semi-implicit strong Stratonovich-Taylor schemes with order $2$. We can improve the stability of simulations considerably without too much additional computational effort by using our full implicit schemes. The full implicit strong Taylor schemes allow a larger range of time step sizes than other schemes and are suitable for SSDE with stiffness on both the drift and the diffusion terms. Our numerical experiment shows these points.