- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
We propose a $\theta$-$L$ approach for solving a sharp-interface model about simulating solid-state dewetting of thin films with isotropic/weakly anisotropic surface energies. The sharp-interface model is governed by surface diffusion and contact line migration. For solving the model, traditional numerical methods usually suffer from the severe stability constraint and/or the mesh distribution trouble. In the $\theta$-$L$ approach, we introduce a useful tangential velocity along the evolving interface and utilize a new set of variables (i.e., the tangential angle $\theta$ and the total length $L$ of the interface curve), so that it not only could reduce the stiffness resulted from the surface tension, but also could ensure the mesh equidistribution property during the evolution. Furthermore, it can achieve second-order accuracy when implemented by a semi-implicit linear finite element method. Numerical results are reported to demonstrate that the proposed $\theta$-$L$ approach is efficient and accurate.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2010-m2020-0040}, url = {http://global-sci.org/intro/article_detail/jcm/20187.html} }We propose a $\theta$-$L$ approach for solving a sharp-interface model about simulating solid-state dewetting of thin films with isotropic/weakly anisotropic surface energies. The sharp-interface model is governed by surface diffusion and contact line migration. For solving the model, traditional numerical methods usually suffer from the severe stability constraint and/or the mesh distribution trouble. In the $\theta$-$L$ approach, we introduce a useful tangential velocity along the evolving interface and utilize a new set of variables (i.e., the tangential angle $\theta$ and the total length $L$ of the interface curve), so that it not only could reduce the stiffness resulted from the surface tension, but also could ensure the mesh equidistribution property during the evolution. Furthermore, it can achieve second-order accuracy when implemented by a semi-implicit linear finite element method. Numerical results are reported to demonstrate that the proposed $\theta$-$L$ approach is efficient and accurate.