- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This article studies a posteriori error analysis of fully discrete finite element approximations for semilinear parabolic optimal control problems. Based on elliptic reconstruction approach introduced earlier by Makridakis and Nochetto [25], a residual based a posteriori error estimators for the state, co-state and control variables are derived. The space discretization of the state and co-state variables is done by using the piecewise linear and continuous finite elements, whereas the piecewise constant functions are employed for the control variable. The temporal discretization is based on the backward Euler method. We derive a posteriori error estimates for the state, co-state and control variables in the $L^\infty(0,T;L^2(\Omega))$-norm. Finally, a numerical experiment is performed to illustrate the performance of the derived estimators.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2009-m2019-0194}, url = {http://global-sci.org/intro/article_detail/jcm/20182.html} }This article studies a posteriori error analysis of fully discrete finite element approximations for semilinear parabolic optimal control problems. Based on elliptic reconstruction approach introduced earlier by Makridakis and Nochetto [25], a residual based a posteriori error estimators for the state, co-state and control variables are derived. The space discretization of the state and co-state variables is done by using the piecewise linear and continuous finite elements, whereas the piecewise constant functions are employed for the control variable. The temporal discretization is based on the backward Euler method. We derive a posteriori error estimates for the state, co-state and control variables in the $L^\infty(0,T;L^2(\Omega))$-norm. Finally, a numerical experiment is performed to illustrate the performance of the derived estimators.