- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we present a finite element algorithm for the time-dependent nematic liquid crystal flow based on the Gauge-Uzawa method. This algorithm combines the Gauge and Uzawa methods within a finite element variational formulation, which is a fully discrete projection type algorithm, whereas many projection methods have been studied without space discretization. Besides, error estimates for velocity and molecular orientation of the nematic liquid crystal flow are shown. Finally, numerical results are given to show that the presented algorithm is reliable and confirm the theoretical analysis.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2005-m2020-0010}, url = {http://global-sci.org/intro/article_detail/jcm/19968.html} }In this paper, we present a finite element algorithm for the time-dependent nematic liquid crystal flow based on the Gauge-Uzawa method. This algorithm combines the Gauge and Uzawa methods within a finite element variational formulation, which is a fully discrete projection type algorithm, whereas many projection methods have been studied without space discretization. Besides, error estimates for velocity and molecular orientation of the nematic liquid crystal flow are shown. Finally, numerical results are given to show that the presented algorithm is reliable and confirm the theoretical analysis.