- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
A new understanding of adversarial examples and adversarial robustness is proposed by decoupling the data generator and the label generator (which we call the teacher). In our framework, adversarial robustness is a conditional concept — the student model is not absolutely robust, but robust with respect to the teacher. Based on the new understanding, we claim that adversarial examples exist because the student cannot obtain sufficient information of the teacher from the training data. Various ways of achieving robustness is compared. Theoretical and numerical evidence shows that to efficiently attain robustness, a teacher that actively provides its information to the student may be necessary.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2105-m2020-0310}, url = {http://global-sci.org/intro/article_detail/jcm/19916.html} }A new understanding of adversarial examples and adversarial robustness is proposed by decoupling the data generator and the label generator (which we call the teacher). In our framework, adversarial robustness is a conditional concept — the student model is not absolutely robust, but robust with respect to the teacher. Based on the new understanding, we claim that adversarial examples exist because the student cannot obtain sufficient information of the teacher from the training data. Various ways of achieving robustness is compared. Theoretical and numerical evidence shows that to efficiently attain robustness, a teacher that actively provides its information to the student may be necessary.