- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
We propose a novel algorithm, based on physics-informed neural networks (PINNs) to efficiently approximate solutions of nonlinear dispersive PDEs such as the KdV-Kawahara, Camassa-Holm and Benjamin-Ono equations. The stability of solutions of these dispersive PDEs is leveraged to prove rigorous bounds on the resulting error. We present several numerical experiments to demonstrate that PINNs can approximate solutions of these dispersive PDEs very accurately.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2101-m2020-0342}, url = {http://global-sci.org/intro/article_detail/jcm/19913.html} }We propose a novel algorithm, based on physics-informed neural networks (PINNs) to efficiently approximate solutions of nonlinear dispersive PDEs such as the KdV-Kawahara, Camassa-Holm and Benjamin-Ono equations. The stability of solutions of these dispersive PDEs is leveraged to prove rigorous bounds on the resulting error. We present several numerical experiments to demonstrate that PINNs can approximate solutions of these dispersive PDEs very accurately.